The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila

نویسندگان

  • Barry Denholm
  • Nan Hu
  • Teddy Fauquier
  • Xavier Caubit
  • Laurent Fasano
  • Helen Skaer
چکیده

The physiological activities of organs are underpinned by an interplay between the distinct cell types they contain. However, little is known about the genetic control of patterned cell differentiation during organ development. We show that the conserved Teashirt transcription factors are decisive for the differentiation of a subset of secretory cells, stellate cells, in Drosophila melanogaster renal tubules. Teashirt controls the expression of the water channel Drip, the chloride conductance channel CLC-a and the Leukokinin receptor (LKR), all of which characterise differentiated stellate cells and are required for primary urine production and responsiveness to diuretic stimuli. Teashirt also controls a dramatic transformation in cell morphology, from cuboidal to the eponymous stellate shape, during metamorphosis. teashirt interacts with cut, which encodes a transcription factor that underlies the differentiation of the primary, principal secretory cells, establishing a reciprocal negative-feedback loop that ensures the full differentiation of both cell types. Loss of teashirt leads to ineffective urine production, failure of homeostasis and premature lethality. Stellate cell-specific expression of the teashirt paralogue tiptop, which is not normally expressed in larval or adult stellate cells, almost completely rescues teashirt loss of expression from stellate cells. We demonstrate conservation in the expression of the family of tiptop/teashirt genes in lower insects and establish conservation in the targets of Teashirt transcription factors in mouse embryonic kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeotic functions of the Teashirt transcription factor during adult Drosophila development

During Drosophila development region-specific regulation of target genes by Hox proteins is modulated by genetic interactions with various cofactors and genetic collaborators. During embryogenesis one such modulator of Hox target specificity is the zinc-finger transcription factor Teashirt (Tsh) that is expressed in the developing trunk and cooperatively functions with trunk-specific Hox protei...

متن کامل

The C-terminal domain of armadillo binds to hypophosphorylated teashirt to modulate wingless signalling in Drosophila.

Wnt signalling is a key pathway for tissue patterning during animal development. In Drosophila, the Wnt protein Wingless acts to stabilize Armadillo inside cells where it binds to at least two DNA-binding factors which regulate specific target genes. One Armadillo-binding protein in Drosophila is the zinc finger protein Teashirt. Here we show that Wingless signalling promotes the phosphorylatio...

متن کامل

Grunge, related to human Atrophin-like proteins, has multiple functions in Drosophila development.

We have carried out a genetic screen designed to isolate regulators of teashirt expression. One of these regulators is the Grunge gene, which encodes a protein with motifs found in human arginine-glutamic acid dipeptide repeat, Metastasis-associated-like and Atrophin-1 proteins. Grunge is the only Atrophin-like protein in Drosophila, whereas several exist in humans. We provide evidence that Gru...

متن کامل

Restricted teashirt expression confers eye-specific responsiveness to Dpp and Wg signals during eye specification in Drosophila.

In Drosophila, the eye primordium is specified as a subdomain of the larval eye disc. Here, we show that the Zn-finger transcription factor teashirt (tsh) marks the region of the early eye disc where the eye primordium will form. Moreover, tsh misexpression directs eye primordium formation in disc regions normally destined to form head capsule, something the eye selector genes eyeless (ey) and ...

متن کامل

Vertebrate orthologues of the Drosophila region-specific patterning gene teashirt

In Drosophila the teashirt gene, coding for a zinc finger protein, is active in specific body parts for patterning. For example, Teashirt is required in the trunk (thorax and abdomen) tagmata of the embryo, parts of the intestine and the proximal parts of appendages. Here we report the isolation of vertebrate cDNAs related to teashirt. As in Drosophila, human and murine proteins possess three w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2013